Ask AI on The Internet
Question: Find the directional derivative of f(x,y,z) = xy+yz+zx at P(1,-1,3) in the direction from P to Q(2,4,5).
Using the formula for the directional derivative of f at P in the direction of a unit vector u, the directional derivative is: F'(P, u) = u_x * ∂f/∂x + u_y * ∂f/∂y + u_z * ∂f/∂z Where u_x, u_y and u_z are the components of the unit vector u. P = (1,-1,3) and Q = (2,4,5) and the unit vector u = (Q - P)/|Q - P| = (1,5,2)/√36 So, the directional derivative = u_x * ∂f/∂x + u_y * ∂f/∂y + u_z * ∂f/∂z = (1/√36)*∂f/∂x + (5/√36)*∂f/∂y + (2/√36)*∂f/∂z = (1/√36)* y + (5/√36)* z + (2/√36)* x = (1/√36)*(-1) + (5/√36)*(5) + (2/√36)*(1) = (-1/√36) + (25/√36) + (2/√36) = (22/√36) ≈ 3.02.
March 3, 2023, 9:07 p.m.
A new large language model has been made available since this question was asked.
To generate an updated answer from the new model, click the button below.
Think your answer is better than the AI's? Post it below.
Other Most Relevant Posts:
Question Tags
If you want your question answered by an AI, click here.
Post your own comment: