Ask AI on The Internet
Question: A scientist measures the initial amount of Carbon-14 in a substance to be 25 grams. The relationship between A , the amount of Carbon-14 remaining in that substance, in grams, and t , the elapsed time, in years, since the initial measurement is modeled by the following equation. A = 25e^0.00012t In how many years will the substance contain exactly 20 grams of Carbon-14 ? Give an exact answer expressed as a natural logarithm.
To solve for t, capital 'T' in this equation is what we want to find. We set A = 20 in your equation and solve for t: 20 = 25e^0.00012t First, we isolate the term with t by dividing both sides by 25: 20/25 = e^0.00012t or, 0.8 = e^0.00012t On this step, we will take the natural logarithm (ln) of both sides, because the natural logarithm and e are inverse functions, meaning taking the natural logarithm on the right side will remove exponentiation: ln(0.8) = ln(e^0.00012t) Due to a property of logarithms, we can then move the exponent in front of the natural logarithm on the right side: ln(0.8) = 0.00012t * ln(e) Since ln(e) equals 1: ln(0.8) = 0.00012t Finally, to solve for t, we will divide both sides by 0.00012: t = ln(0.8) / 0.00012 This is the exact answer.
A new large language model has been made available since this question was asked.
To generate an updated answer from the new model, click the button below.
Think your answer is better than the AI's? Post it below.
Question Tags
If you want your question answered by an AI, click here.
Post your own comment: